CHAPTER 82
CHOLEDOCAL CYST
Mohammed A. Latif Ayad
Hesham M. Abdelkader
Alaa F. Hamza
Donald E. Meier

Introduction
Congenital bile duct dilatation is a better term for the spectrum of anomalies known traditionally as choledochal cysts. Choledochal cysts may cause symptoms at any age, but typically present with obstructive jaundice and/or abdominal pain in infants and children. Although rare, they are more common in females (female-to-male ratio of about 3–4:1) and in some Asian races.

Anatomic Classification
Type I, II, and III forms of choledochal cysts were originally described by Alonso-Lej and colleagues. Subsequently, Todani and associates and others have further classified this anomaly into five main types and additional subtypes, based on analyses of cholangiograms. The two relatively common categories of cyst are types I and IV-A. The common varieties are as follows (see Figure 82.1):

- **Type I** consists of dilatation of the common bile duct, which may be cystic, focal, or fusiform (subtypes A, B, and C, respectively) (90–95% of cases).
- **Type II** is diverticulum of the extrahepatic bile duct.
- **Type III** involves choledochoceles.
- **Types IV:** Type IV-A, the second most common type, is defined as both intrahepatic and extrahepatic dilatation of the biliary tree. The rare malformation of multiple extrahepatic cysts is designated as type IV-B.
- **Type V** comprises single or multiple intrahepatic cysts. This type has been referred to as Caroli’s disease when associated with hepatic fibrosis.

Pancreaticobiliary malunion may occur without choledochal dilatation, and this has been termed a forme fruste choledochal cyst.

Pathology
Histologic sections of the wall of extrahepatic choledochal cysts have demonstrated a thick-walled structure of dense connective tissue interlaced with strands of smooth muscle. In most instances, some degree of inflammatory reaction is noted; it is minimal in infants and gradually becomes more marked as patients get older. The histologic appearance of other forms of choledochal cysts is similar, with the exception of choledochocele. In these cysts, the lining is most commonly duodenal mucosa and only occasionally resembles the lining of the bile duct.

The findings on liver biopsy also vary with the age of the patient. In a newborn, the histologic appearance of the liver is usually interpreted as normal or having mild bile duct proliferation consistent with chronic biliary obstruction. Occasionally, in older patients, mild periporal fibrosis is noted. Although the bile duct is usually normal in appearance on histologic section, inflammation may be present, and stones and sludge may be seen in the common bile duct and occasionally in the intrahepatic ducts of older patients. Most patients with choledochal cysts have an anomalous pancreaticobiliary junction.

Carcinomas arising in the wall of choledochal cysts are well recognized and believed to be the result of chronic inflammation. Biliary carcinoma has been noted in patients with an anomalous pancreaticobiliary junction even without a choledochal cyst. Carcinoma in the wall of a choledochal cyst has rarely been reported in a child, being primarily a problem of adults. Although the majority of these malignancies occur in the wall of choledochal cysts, other sites have included the gallbladder and the head of the pancreas in the region of the pancreaticobiliary junction. Because of the long interval over which these lesions seem to develop, it is presumed that they are the result of chronic inflammation from cholangitis. Inflammation is not a prominent feature in patients who have choledochoceles, although mild inflammation may lead to stenosis of the common bile duct and the pancreatic duct.

Aetiology
Choledochal cysts are congenital. Two main aetiologic theories have been proposed: (1) weakness of the wall of the bile duct due to pancreaticobiliary malunion (PBM), and (2) obstruction of the distal part of the bile duct.

In more than 75% of patients with a choledochal cyst (particularly type I and IV cysts), there is an anomalous junction between the distal common bile duct and the pancreatic duct; the ducts unite outside the duodenal wall some distance proximal to the ampulla of Vater. This common channel often exceeds 5–10 mm in length (Figure 82.2), and it is not surrounded by the normal sphincter mechanism. Consequently, pancreatic juice refluxes into the biliary tree. Isolated PBM without choledochal dilatation has been implicated in the pathogenesis of gallbladder cancer in adults. A common channel also predisposes to reflux of bile into the pancreatic duct, which may precipitate pancreatitis.
PBM is not found in all patients with congenital choledochal dilatation, and it can occur with a normal caliber bile duct. In addition, choledochal cysts have been detected as early as at 15 weeks gestation, a time when acinar development of the pancreas is rudimentary, which argues against a significant role for pancreaticobiliary reflux in such cases. An alternative and more plausible explanation is obstruction of the distal common bile duct. A distal obstruction could be functional rather than mechanical, and can occur as a result of PBM and an abnormal sphincter of Oddi. Kusunoki et al. have shown that there are abnormally few ganglion cells in the narrow portion of the common bile duct in patients with a choledochal cyst, as compared with controls. Presumably, this would result in functional obstruction and proximal dilatation in the same manner as achalasia of the esophagus or Hirschsprung’s disease.

Presentation

Patients with choledochal cysts usually present in one of two ways, which has led to them being classified as infantile or adult in nature. In the infantile form, patients ranging from 1 to 3 months of age present with obstructive jaundice, acholic stools, and biliary atresia. Type I cysts may be diagnosed with a sensitivity of 70% if not better than ERCP, however, without the potential complications of the ERCP invasive technique.

Preoperative Preparation

Preoperative correction of any bleeding tendency with either parenteral vitamin K administration or even fresh frozen plasma is a must. Intravenous (IV) antibiotics are given to treat any attack of cholangitis.

Surgical Management

Historically, a cyst-enterostomy internal drainage procedure, either cyst-duodenostomy or cyst-jejunostomy, was considered the surgical management option for choledochal cysts. These approaches were abandoned due to complications, including malignancy in the remaining cyst, pancreatitis, and cholangitis.

The procedure currently recommended is cyst excision followed by Roux-en-Y hepaticojjunostomy or choledochojejunalostomy, with the former thought to reduce the incidence of stricture formation postoperatively. Alternatives that have been suggested include hepaticoduodenostomy so that the anastomosis is accessible to ERCP in the event of postoperative complications. Hepaticoduodenostomy has not been widely adopted due to the potential for biliary reflux.
and cholangitis. The technique of appendix or free jejunal interposition hepaticoenterostomy similarly failed to gain widespread acclaim, as these grafts underwent stenosis with resultant hepatic fibrosis.

After excision of the cyst, the intrahepatic ducts should be probed and lavaged with saline to rid the ductal system of sludge and possible stones. Additionally, on occasion, obstruction may be found in the proximal biliary system, which can be dilated. Therefore, intraoperative cholangiography before cyst excision is a must.

For many patients, particularly older ones who have had recurrent bouts of cholangitis, pericystic inflammation, and adherence to adjacent vascular structures, cyst excision is accomplished by using a plane of dissection between the inner and outer layers of the cyst (mucoseotomy). The portion of the cyst wall that is adherent to the portal vein and hepatic artery are left undisturbed.

Patients with choledochoceles are not usually diagnosed until they are at least 5 years of age because the characteristic clinical symptom is abdominal pain of an intermittent nature that is not specific. A longitudinal duodenotomy permits complete exposure of an intraduodenal choledochocele. Once the choledochocele is exposed, it should be unroofed, and then the mucosa is reapproximated with multiple interrupted absorbable sutures. It is important to identify and calibrate the entry points of the common bile duct and the pancreatic duct to determine whether a sphincteroplasty of these ducts will be needed.

Patients with intrahepatic cysts or Caroli’s disease are difficult to manage because they tend to develop severe recurrent bouts of cholangitis, subsequent biliary cirrhosis, and progressive segmental ductal ectasia. For this reason, these patients require frequent follow-up with US over a period of many years. A variety of techniques may be needed for management of intrahepatic cysts. Partial hepatic lobectomy may be done when the disease is localized and amenable to resection, but unroofing with drainage into a Roux limb of jejunum may be needed when proximal ductal obstruction is encountered. Otherwise, multiple cysts and Caroli’s disease that are not amenable to localized resection or drainage may be an indication for liver transplantation.

Timing of Surgery
The timing of surgery should be early after diagnosis, even in asymptomatic prenatally diagnosed neonates (within the first 1–3 months of age), to reduce the incidence of complications, and particularly to prevent liver fibrosis in neonates.

Postoperative Complications

Intrahepatic Cholelithiasis
Intrahepatic stones are a particular problem in cases of type IV disease with residual intrahepatic cysts. Choledochoscopy is used at the time of surgery to detect and remove intrahepatic stones at operation. Intraoperative cholangiography with ductal probing and washout of debris reduces postoperative complications of stones retained in the biliary radicals.

Malignant Change after Cyst Excision
Even after cyst excision, there are reports of malignancy, usually from incomplete cyst excision. However, in a comprehensive review, the incidence of post-excision malignancy has been estimated at only 0.7%. Since malignancy may occur in the residual intrapancreatic portion of the choledochal cyst, close long-term follow-up for those patients with intrapancreatic extension is recommended, with resection if needed.

The extent of the resection in type IV-A cysts is controversial. Several authors advocate management by excision of the extrapancreatic component only, with hepaticoenterostomy. However, malignancy has been reported to arise in the intrahepatic cysts, as described above, and it has also been reported to occur after resection of the extrahepatic cyst with hepaticojejunostomy. Clearly, when the intrahepatic cysts are widespread, they cannot be excised; however, when the intrahepatic disease is localized, it is reasonable to perform a partial hepatectomy. Similarly, partial hepatectomy has been practiced for Caroli’s disease.

Cholangitis
Patients who have had cyst excision with internal drainage have a lower incidence of postoperative cholangitis than do patients with biliary atresia who have had a similar type of drainage procedure. Hepaticoduodenostomy after cyst excision has long been claimed to be associated with a higher incidence of cholangitis and biliary reflux; however, our group (Ain Shams University in Cairo) has been using this type of biliary reconstruction after cyst excision for more than 50 cases with a follow-up period now approaching 6 years, and preliminary data refute the claim of higher cholangitis and biliary reflux rates with hepaticoduodenostomy.

Stricture Formation
Performing a higher anastomosis at the level of the confluence, as proposed by Todani and co-workers, may reduce the incidence of anastomotic stricture formation. Other investigators disagree and believe that conventional drainage at the level of the hepatic hilum is sufficient. We agree that an anastomosis to the common hepatic duct is sufficient, provided that a stricture of the right or left hepatic duct is not left in place.

Pancreatitis
Rarely, patients may develop pancreatitis after cyst excision and internal drainage. Acute pancreatitis due to protein plug formation is observed in more than 20% of patients followed long term. The morphology of the pancreatic duct and ductal dilatation, possibly caused by long-standing stagnation of pancreatic juice, may be associated with postoperative pancreatitis in choledochal cyst patients. Overall, however, pancreatitis is an uncommon event after excision and internal drainage of a choledochal cyst.

Laparoscopic Excision
Recently, laparoscopic cyst excision and hepaticojejunostomy have been described. It is too early to assess the long-term results of this approach in terms of anastomotic strictures and malignancy arising in residual cyst tissue. The principle of laparoscopic surgery for choledochal cysts is similar to that of open surgery, although it is much more technically demanding, especially in small children in whom the peritoneal space is very limited. The magnification of the laparoscope allows excellent visualization of the anatomy and, in turn, facilitates meticulous mobilization of the cyst from surrounding structures. Fashioning of the jejunal Roux loop can be performed through the enlarged umbilical wound. This enables meticulous bowel anastomosis, just like open surgery, and also avoids intraabdominal contamination.

Postoperative Follow-Up
Our routine is to keep the patients on low doses of ampicillin or trimethoprim-sulfamethoxazole for approximately 6 weeks postoperation to protect against cholangitis, after which the potential for this complication appears to diminish. Postoperative follow-up should be every 3 months for the first year and annually thereafter in asymptomatic patients. At each visit, liver function studies and serum amylase levels should be determined. Ultrasound of the liver and pancreas is done annually or when necessary if patients become symptomatic. US of the liver is particularly important in patients who are found to have intrahepatic ductal dilatation preoperatively. US is also helpful for long-term evaluation of the Roux-en-Y ductal anastomosis because occasional patients will develop late anastomotic strictures or stones. Patients who had hepaticoduodenostomy with a hepatobiliary iminodiacetic acid (HIDA) scan and barium meal and follow-through in the Trendelenberg position were investigated for biliary alkaline reflux; findings proved to be of no significance.

Evidence-Based Research
Table 82.1 presents a study of differences in characteristics between newborns and infants with choledochal cysts.
Table 82.1: Evidence-based research.

<table>
<thead>
<tr>
<th>Title</th>
<th>The different clinical and liver pathological characteristics between newborns and infants with choledochal cysts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Hua MC, Chao HC, Lien R, Lai JY, et al.</td>
</tr>
<tr>
<td>Institution</td>
<td>Department of Pediatric Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan.</td>
</tr>
<tr>
<td>Problem</td>
<td>Comparison of choledochal cysts presenting in the neonatal period with those presenting in older age groups, assuming there is a difference in the clinical and liver pathological aspects.</td>
</tr>
<tr>
<td>Intervention</td>
<td>Cyst excision and Roux-en-Y hepaticojejunostomy.</td>
</tr>
<tr>
<td>Comparison/ control (quality of evidence)</td>
<td>The patients were divided into two age groups: the newborn group comprised those who presented within 1 month of birth and the antenatally diagnosed patients; the infant group comprised those who presented between 1 and 12 months of age. All medical records of those patients who presented to the institution between March 1991 and November 2006 were retrospectively reviewed.</td>
</tr>
<tr>
<td>Outcome/ effect</td>
<td>Sixteen patients (45.7%) were categorized into the newborn group, including 12 patients in whom the cysts were detected by using antenatal ultrasound. Nineteen patients (54.3%) were in the infant group. According to Todani’s classification, 74.2% of choledochal cysts were type I. Using chi-square and Student’s t-tests, the infant group had significantly higher preoperative morbidity, abnormal levels of serum transaminase, gamma trans-peptide (γ-GT), and grade of liver fibrosis (≥ grade 2) (p < 0.05). The postoperative complications were not statistically significant between newborn and infant groups.</td>
</tr>
</tbody>
</table>

Key Summary Points

1. Choledochal cysts are uncommon, but when encountered, they may appear nonspecifically rather than classically. A high index of suspicion will avoid a delay in diagnosis.
2. The imaging modality of choice for diagnosing and characterizing choledochal cysts is magnetic resonance cholangiopancreatography (MRCP).
3. Delayed diagnosis may have a variety of undesirable sequelae, including biliary cirrhosis, cholangiocarcinoma, pancreatitis, and cholangitis.
4. To avoid these complications, choledochal cysts should be treated by complete excision, whenever possible, with reconstruction using internal drainage.
5. Follow-up is essential to detect development of any complications, such as cholangitis, anastomotic stricture, or intrahepatic cholelithiasis.

Suggested Reading

Blankensteijn JD, Terpstra OT. Early and late results following choledochoduodenostomy and choledochojunostomy. HPB Surg 1990; 2:151–158.